2 1 Moving Average Models MA Modelle. Time-Serienmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und gleitende durchschnittliche Ausdrücke enthalten In Woche 1 haben wir einen autoregressiven Begriff in einem Zeitreihenmodell für die Variable xt gelernt, ist ein verzögerter Wert von xt , Ein Verzögerung 1 autoregressiver Begriff ist x t-1 multipliziert mit einem Koeffizienten Diese Lektion definiert gleitende durchschnittliche Ausdrücke. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler, multipliziert mit einem Koeffizienten. Letztes Upset N 0, Sigma 2w, Bedeutung Dass die wt identisch, unabhängig verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das 1-stufige gleitende Durchschnittsmodell, das mit MA 1 bezeichnet ist, ist. Xt mu wt theta1w. Das 2. geordnete gleitende Durchschnittsmodell, das mit MA 2 bezeichnet wird, ist. Xt mu wt theta1w theta2w. Das gängige gleitende durchschnittliche Modell, das mit MA q bezeichnet wird, ist. Xt mu wt theta1w theta2w punkte thetaq. Note Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und nicht quittierten Begriffe in Formeln für ACFs und Abweichungen Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Zeichen verwendet wurden, um das geschätzte Modell R korrekt zu schreiben. R verwendet positive Zeichen in seinem zugrunde liegenden Modell, wie wir hier sind. Die theoretischen Eigenschaften einer Zeitreihe mit Ein MA 1 Modell. Hinweis, dass der einzige Wert ungleich Null in der theoretischen ACF ist für lag 1 Alle anderen Autokorrelationen sind 0 Also ein Beispiel ACF mit einer signifikanten Autokorrelation nur bei lag 1 ist ein Indikator für eine mögliche MA 1 Modell. Für interessierte Studenten, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handzettel. Beispiel 1 Angenommen, dass ein MA 1 - Modell xt 10 wt 7 w t-1 ist, wobei wt Overset N 0,1 Somit ist der Koeffizient 1 0 7 Die theoretische ACF ist gegeben durch Von diesem ACF folgt. Die Plot, die gerade gezeigt wird, ist die theoretische ACF für eine MA 1 mit 1 0 7 In der Praxis, ein Beispiel gewonnen t in der Regel ein solches klares Muster Mit R, simulierten wir n 100 Probenwerte mit dem Modell xt 10 wt 7 W t-1 wo w t. iid N 0,1 Für diese Simulation folgt ein Zeitreihenplot der Stichprobendaten Wir können aus dieser Handlung viel erzählen. Die Stichprobe ACF für die simulierten Daten folgt Wir sehen eine Spike bei Verzögerung 1 Gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Beachten Sie, dass die Stichprobe ACF nicht mit dem theoretischen Muster der zugrunde liegenden MA 1 übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sind. Eine andere Probe hätte eine etwas andere Probe ACF Unten gezeigt, aber wahrscheinlich die gleichen breiten Features haben. Theroretische Eigenschaften einer Zeitreihe mit einem MA 2 Modell. Für das MA 2 Modell sind die theoretischen Eigenschaften die folgenden. Hinweis, dass die einzigen Werte ungleich Null in der theoretischen ACF sind für Lags 1 Und 2 Autokorrelationen für höhere Verzögerungen sind 0 Also, ein Beispiel ACF mit signifikanten Autokorrelationen bei Verzögerungen 1 und 2, aber nicht signifikante Autokorrelationen für höhere Verzögerungen zeigt ein mögliches MA 2 - Modell an. N 0,1 Die Koeffizienten sind 1 0 5 und 2 0 3 Da es sich hierbei um einen MA 2 handelt, wird der theoretische ACF nur ungleich Null-Werte nur bei den Verzögerungen 1 und 2 haben. Die Werte der beiden Nicht-Null-Autokorrelationen sind. Ein Diagramm der theoretischen ACF folgt. Wenn fast immer der Fall ist, wurden die Beispieldaten gewonnen Verhalten sich ganz so perfekt wie die Theorie Wir simulierten n 150 Sample-Werte für das Modell xt 10 wt 5 w t-1 3 w t-2 wobei w t. iid N 0,1 Die Zeitreihen-Plot der Daten folgt Wie bei den Zeitreihen Plot für die MA 1 Beispieldaten, können Sie t viel davon erzählen. Das Beispiel ACF für die simulierten Daten folgt Das Muster ist typisch für Situationen, in denen ein MA 2 Modell nützlich sein kann Es gibt zwei statistisch signifikante Spikes bei den Verzögerungen 1 und 2 gefolgt Durch nicht signifikante Werte für andere Lags Beachten Sie, dass aufgrund des Stichprobenfehlers die Stichprobe ACF nicht mit dem theoretischen Muster genau übereinstimmte. ACF für General MA q Modelle. Eigenschaft von MA q-Modelle im Allgemeinen ist, dass es keine Null-Autokorrelationen für die erste gibt Q Verzögerungen und Autokorrelationen 0 für alle Verzögerungen q. Non-Eindeutigkeit der Verbindung zwischen Werten von 1 und Rho1 in MA 1 Modell. Im MA 1 Modell gibt für jeden Wert von 1 der reziproke 1 1 den gleichen Wert für ein Beispiel , Benutze 0 5 für 1 und verwende dann 1 0 5 2 für 1 Du bekommst in beiden Fällen rho1 0 4. Um eine theoretische Einschränkung zu erfüllen, die Invertierbarkeit genannt wird, beschränken wir MA 1 - Modelle, Werte mit einem absoluten Wert kleiner als 1 zu haben Gegeben, 1 0 5 wird ein zulässiger Parameterwert sein, wohingegen 1 1 0 5 2 nicht. Unterstützung von MA Modellen ist. Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einer konvergierenden unendlichen Ordnung ist AR-Modell Durch konvergierende, wir Dass die AR-Koeffizienten auf 0 abnehmen, wenn wir uns in der Zeit zurückziehen. Unverträglichkeit ist eine Einschränkung, die in die Zeitreihen-Software programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Terminen abzuschätzen. Es ist nicht etwas, das wir in der Datenanalyse überprüfen. Weitere Informationen über die Invertierbarkeitsbeschränkung für MA 1 Modelle ist im Anhang angegeben. Advanced Theory Note Für ein MA q Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell Die notwendige Bedingung für die Invertierbarkeit ist, dass die Koeffizienten Werte haben, so dass die Gleichung 1- 1 y - - qyq 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R Code für die Beispiele In Beispiel 1 haben wir die theoretische ACF des Modells xt 10 wt 7w t-1 aufgetragen und dann n 150 Werte aus diesem Modell simuliert und Aufgetragen die Sample-Zeitreihen und die Probe ACF für die simulierten Daten Die R-Befehle, die verwendet wurden, um das theoretische ACF zu zeichnen, waren. acfma1 ARMAacf ma c 0 7, 10 Verzögerungen von ACF für MA 1 mit theta1 0 7 Verzögerungen 0 10 erzeugt eine Variable namens Lags Das von 0 bis 10 Plot-Verzögerungen reicht, acfma1, xlim c 1,10, ylab r, Typ h, Haupt-ACF für MA 1 mit theta1 0 7 abline h 0 fügt eine horizontale Achse zum Plot hinzu. Der erste Befehl bestimmt die ACF und Speichert es in einem Objekt namens acfma1 unsere Wahl des Namens. Die Plot-Befehl der 3. Befehl Plots Lags gegenüber den ACF-Werte für Lags 1 bis 10 Die ylab Parameter markiert die y-Achse und der Haupt-Parameter setzt einen Titel auf dem Plot. To sehen Die numerischen Werte des ACF verwenden einfach den Befehl acfma1. Die Simulation und Plots wurden mit den folgenden Befehlen durchgeführt. List ma c 0 7 Simuliert n 150 Werte aus MA 1 x xc 10 fügt 10 hinzu, um Mittel zu machen 10 Simulationsvorgaben bedeuten 0 Plot x, Typ b, Haupt Simuliert MA 1 Daten acf x, xlim c 1,10, Haupt-ACF für simuliert Beispieldaten In Beispiel 2 haben wir die theoretische ACF des Modells xt 10 wt 5 w t-1 3 w t-2 aufgetragen und dann n 150 Werte aus diesem Modell simuliert und die Sample-Zeitreihen und die Probe ACF für die simulierten aufgetragen Daten Die verwendeten R-Befehle waren. acfma2 ARMAacf ma c 0 5,0 3, acfma2-Verzögerungen 0 10 Plot-Verzögerungen, acfma2, xlim c 1,10, ylab r, Typ h, Haupt-ACF für MA 2 mit theta1 0 5, theta2 0 3 abline h 0 list ma c 0 5, 0 3 x xc 10 plot x, Typ b, main Simuliert MA 2 Serie acf x, xlim c 1,10, Haupt-ACF für simulierte MA 2 Daten. Appendix Nachweis der Eigenschaften von MA 1 Für interessierte Schüler sind hier Beweise für die theoretischen Eigenschaften des MA 1 Modells. Variante Text xt Text mu wt theta1 w 0 text wt text theta1w sigma 2w theta 21 sigma 2w 1 theta 21 sigma 2w. Wenn h 1, der vorherige ausdruck 1 W 2 Für jeden h 2 ist der vorhergehende Ausdruck 0 Der Grund dafür ist, dass durch die Definition der Unabhängigkeit des wt E wkwj 0 für jedes kj weiter, weil das wt den Mittelwert 0 hat, E wjwj E wj 2 w 2.Für eine Zeitreihe. Geben Sie dieses Ergebnis, um das oben angegebene ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als ein unendliches Ordnungs-AR-Modell geschrieben werden kann, das so konvergiert, dass die AR-Koeffizienten zu 0 konvergieren, wenn wir uns unendlich zurück bewegen. Wir zeigen die Invertierbarkeit für die MA 1 Modell. Wir ersetzen dann die Beziehung 2 für w t-1 in Gleichung 1. 3 zt wt theta1 z - theta1w wt theta1z - theta 2w. Die Zeit t-2 Gleichung 2 wird. Wir ersetzen dann die Beziehung 4 für w t-2 In Gleichung 3. Zt wt theta1 z - Theta 21w wt theta1z - theta 21 z - theta1w wt theta1z - theta1 2z theta 31.Wenn wir unendlich weitergehen würden, würden wir das unendliche AR-Modell bekommen. Zt wt theta1 z - theta 21z theta 31z - theta 41z dots. Hinweis jedoch, dass wenn 1 1 die Koeffizienten, die die Verzögerungen von z multiplizieren, unendlich an Größe zunehmen werden, wenn wir uns in der Zeit zurückziehen Um dies zu verhindern, brauchen wir 1 1 Dies ist Die Bedingung für ein invertierbares MA 1 Modell. Unendliche Ordnung MA Modell. In Woche 3 sehen wir, dass ein AR 1 Modell in ein unendliches Auftrag MA Modell umgewandelt werden kann. Xt - mu wt phi1w phi 21w punkte phi k1 w punkte sum phi j1w. Diese Summierung der vergangenen weißen Rauschbegriffe ist als die kausale Darstellung eines AR 1 bekannt. Mit anderen Worten, xt ist ein spezieller Typ von MA mit unendlich vielen Terme Rückkehr in der Zeit Dies ist eine unendliche Ordnung MA oder MA Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Recall in Woche 1, stellten wir fest, dass eine Voraussetzung für eine stationäre AR 1 ist, dass 1 1 Sei s berechnen die Var xt mit der Kausaldarstellung. Dieser letzte Schritt verwendet eine grundlegende Tatsache über geometrische Serien, die phi1 erfordert 1 sonst die Serie divergiert.2 1 Moving Average Models MA models. Time Serie Modelle bekannt als ARIMA Modelle können autoregressive Begriffe und gleitende durchschnittliche Ausdrücke In Woche 1 haben wir einen autoregressiven Begriff in einem Zeitreihenmodell für die Variable xt gelernt, ist ein verzögerter Wert von xt. Zum Beispiel ist ein autoregressiver Term 1 x t-1 multipliziert mit einem Koeffizienten. Diese Lektion definiert Gleitende durchschnittliche Ausdrücke. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler, multipliziert mit einem Koeffizienten. Let wt Overset N 0, Sigma 2w, was bedeutet, dass die wt identisch, unabhängig verteilt sind, jeweils mit einer Normalverteilung mit Mittelwert 0 und Die gleiche Varianz. Die 1. Ordnung gleitenden durchschnittlichen Modell, mit MA 1 bezeichnet ist. Xt mu wt theta1w. Das 2. geordnete gleitende Durchschnittsmodell, das mit MA 2 bezeichnet wird, ist. Xt mu wt theta1w theta2w. Das gängige gleitende durchschnittliche Modell, das mit MA q bezeichnet wird, ist. Xt mu wt theta1w theta2w punkte thetaq. Note Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und nicht quittierten Begriffe in Formeln für ACFs und Abweichungen Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Zeichen verwendet wurden, um das geschätzte Modell R korrekt zu schreiben. R verwendet positive Zeichen in seinem zugrunde liegenden Modell, wie wir hier sind. Die theoretischen Eigenschaften einer Zeitreihe mit Ein MA 1 Modell. Hinweis, dass der einzige Wert ungleich Null in der theoretischen ACF ist für lag 1 Alle anderen Autokorrelationen sind 0 Also ein Beispiel ACF mit einer signifikanten Autokorrelation nur bei lag 1 ist ein Indikator für eine mögliche MA 1 Modell. Für interessierte Studenten, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handzettel. Beispiel 1 Angenommen, dass ein MA 1 - Modell xt 10 wt 7 w t-1 ist, wobei wt Overset N 0,1 Somit ist der Koeffizient 1 0 7 Die theoretische ACF ist gegeben durch Von diesem ACF folgt. Die Plot, die gerade gezeigt wird, ist die theoretische ACF für eine MA 1 mit 1 0 7 In der Praxis, ein Beispiel gewonnen t in der Regel ein solches klares Muster Mit R, simulierten wir n 100 Probenwerte mit dem Modell xt 10 wt 7 W t-1 wo w t. iid N 0,1 Für diese Simulation folgt ein Zeitreihenplot der Stichprobendaten Wir können aus dieser Handlung viel erzählen. Die Stichprobe ACF für die simulierten Daten folgt Wir sehen eine Spike bei Verzögerung 1 Gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Beachten Sie, dass die Stichprobe ACF nicht mit dem theoretischen Muster der zugrunde liegenden MA 1 übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sind. Eine andere Probe hätte eine etwas andere Probe ACF Unten gezeigt, aber wahrscheinlich die gleichen breiten Features haben. Theroretische Eigenschaften einer Zeitreihe mit einem MA 2 Modell. Für das MA 2 Modell sind die theoretischen Eigenschaften die folgenden. Hinweis, dass die einzigen Werte ungleich Null in der theoretischen ACF sind für Lags 1 Und 2 Autokorrelationen für höhere Verzögerungen sind 0 Also, ein Beispiel ACF mit signifikanten Autokorrelationen bei Verzögerungen 1 und 2, aber nicht signifikante Autokorrelationen für höhere Verzögerungen zeigt ein mögliches MA 2 - Modell an. N 0,1 Die Koeffizienten sind 1 0 5 und 2 0 3 Da es sich hierbei um einen MA 2 handelt, wird der theoretische ACF nur ungleich Null-Werte nur bei den Verzögerungen 1 und 2 haben. Die Werte der beiden Nicht-Null-Autokorrelationen sind. Ein Diagramm der theoretischen ACF folgt. Wenn fast immer der Fall ist, wurden die Beispieldaten gewonnen Verhalten sich ganz so perfekt wie die Theorie Wir simulierten n 150 Sample-Werte für das Modell xt 10 wt 5 w t-1 3 w t-2 wobei w t. iid N 0,1 Die Zeitreihen-Plot der Daten folgt Wie bei den Zeitreihen Plot für die MA 1 Beispieldaten, können Sie t viel davon erzählen. Das Beispiel ACF für die simulierten Daten folgt Das Muster ist typisch für Situationen, in denen ein MA 2 Modell nützlich sein kann Es gibt zwei statistisch signifikante Spikes bei den Verzögerungen 1 und 2 gefolgt Durch nicht signifikante Werte für andere Lags Beachten Sie, dass aufgrund des Stichprobenfehlers die Stichprobe ACF nicht mit dem theoretischen Muster genau übereinstimmte. ACF für General MA q Modelle. Eigenschaft von MA q-Modelle im Allgemeinen ist, dass es keine Null-Autokorrelationen für die erste gibt Q Verzögerungen und Autokorrelationen 0 für alle Verzögerungen q. Non-Eindeutigkeit der Verbindung zwischen Werten von 1 und Rho1 in MA 1 Modell. Im MA 1 Modell gibt für jeden Wert von 1 der reziproke 1 1 den gleichen Wert für ein Beispiel , Benutze 0 5 für 1 und verwende dann 1 0 5 2 für 1 Du bekommst in beiden Fällen rho1 0 4. Um eine theoretische Einschränkung zu erfüllen, die Invertierbarkeit genannt wird, beschränken wir MA 1 - Modelle, Werte mit einem absoluten Wert kleiner als 1 zu haben Gegeben, 1 0 5 wird ein zulässiger Parameterwert sein, wohingegen 1 1 0 5 2 nicht. Unterstützung von MA Modellen ist. Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einer konvergierenden unendlichen Ordnung ist AR-Modell Durch konvergierende, wir Dass die AR-Koeffizienten auf 0 abnehmen, wenn wir uns in der Zeit zurückziehen. Unverträglichkeit ist eine Einschränkung, die in die Zeitreihen-Software programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Terminen abzuschätzen. Es ist nicht etwas, das wir in der Datenanalyse überprüfen. Weitere Informationen über die Invertierbarkeitsbeschränkung für MA 1 Modelle ist im Anhang angegeben. Advanced Theory Note Für ein MA q Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell Die notwendige Bedingung für die Invertierbarkeit ist, dass die Koeffizienten Werte haben, so dass die Gleichung 1- 1 y - - qyq 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R Code für die Beispiele In Beispiel 1 haben wir die theoretische ACF des Modells xt 10 wt 7w t-1 aufgetragen und dann n 150 Werte aus diesem Modell simuliert und Aufgetragen die Sample-Zeitreihen und die Probe ACF für die simulierten Daten Die R-Befehle, die verwendet wurden, um das theoretische ACF zu zeichnen, waren. acfma1 ARMAacf ma c 0 7, 10 Verzögerungen von ACF für MA 1 mit theta1 0 7 Verzögerungen 0 10 erzeugt eine Variable namens Lags Das von 0 bis 10 Plot-Verzögerungen reicht, acfma1, xlim c 1,10, ylab r, Typ h, Haupt-ACF für MA 1 mit theta1 0 7 abline h 0 fügt eine horizontale Achse zum Plot hinzu. Der erste Befehl bestimmt die ACF und Speichert es in einem Objekt namens acfma1 unsere Wahl des Namens. Die Plot-Befehl der 3. Befehl Plots Lags gegenüber den ACF-Werte für Lags 1 bis 10 Die ylab Parameter markiert die y-Achse und der Haupt-Parameter setzt einen Titel auf dem Plot. To sehen Die numerischen Werte des ACF verwenden einfach den Befehl acfma1. Die Simulation und Plots wurden mit den folgenden Befehlen durchgeführt. List ma c 0 7 Simuliert n 150 Werte aus MA 1 x xc 10 fügt 10 hinzu, um Mittel zu machen 10 Simulationsvorgaben bedeuten 0 Plot x, Typ b, Haupt Simuliert MA 1 Daten acf x, xlim c 1,10, Haupt-ACF für simuliert Beispieldaten In Beispiel 2 haben wir die theoretische ACF des Modells xt 10 wt 5 w t-1 3 w t-2 aufgetragen und dann n 150 Werte aus diesem Modell simuliert und die Sample-Zeitreihen und die Probe ACF für die simulierten aufgetragen Daten Die verwendeten R-Befehle waren. acfma2 ARMAacf ma c 0 5,0 3, acfma2-Verzögerungen 0 10 Plot-Verzögerungen, acfma2, xlim c 1,10, ylab r, Typ h, Haupt-ACF für MA 2 mit theta1 0 5, theta2 0 3 abline h 0 list ma c 0 5, 0 3 x xc 10 plot x, Typ b, main Simuliert MA 2 Serie acf x, xlim c 1,10, Haupt-ACF für simulierte MA 2 Daten. Appendix Nachweis der Eigenschaften von MA 1 Für interessierte Schüler sind hier Beweise für die theoretischen Eigenschaften des MA 1 Modells. Variante Text xt Text mu wt theta1 w 0 text wt text theta1w sigma 2w theta 21 sigma 2w 1 theta 21 sigma 2w. Wenn h 1, der vorherige ausdruck 1 W 2 Für jeden h 2 ist der vorhergehende Ausdruck 0 Der Grund dafür ist, dass durch die Definition der Unabhängigkeit des wt E wkwj 0 für jedes kj weiter, weil das wt den Mittelwert 0 hat, E wjwj E wj 2 w 2.Für eine Zeitreihe. Geben Sie dieses Ergebnis, um das oben angegebene ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als ein unendliches Ordnungs-AR-Modell geschrieben werden kann, das so konvergiert, dass die AR-Koeffizienten zu 0 konvergieren, wenn wir uns unendlich zurück bewegen. Wir zeigen die Invertierbarkeit für die MA 1 Modell. Wir ersetzen dann die Beziehung 2 für w t-1 in Gleichung 1. 3 zt wt theta1 z - theta1w wt theta1z - theta 2w. Die Zeit t-2 Gleichung 2 wird. Wir ersetzen dann die Beziehung 4 für w t-2 In Gleichung 3. Zt wt theta1 z - Theta 21w wt theta1z - theta 21 z - theta1w wt theta1z - theta1 2z theta 31.Wenn wir unendlich weitergehen würden, würden wir das unendliche AR-Modell bekommen. Zt wt theta1 z - theta 21z theta 31z - theta 41z dots. Hinweis jedoch, dass wenn 1 1 die Koeffizienten, die die Verzögerungen von z multiplizieren, unendlich an Größe zunehmen werden, wenn wir uns in der Zeit zurückziehen Um dies zu verhindern, brauchen wir 1 1 Dies ist Die Bedingung für ein invertierbares MA 1 Modell. Unendliche Ordnung MA Modell. In Woche 3 sehen wir, dass ein AR 1 Modell in ein unendliches Auftrag MA Modell umgewandelt werden kann. Xt - mu wt phi1w phi 21w punkte phi k1 w punkte sum phi j1w. Diese Summierung der vergangenen weißen Rauschbegriffe ist als die kausale Darstellung eines AR 1 bekannt. Mit anderen Worten, xt ist ein spezieller Typ von MA mit unendlich vielen Terme Rückkehr in der Zeit Dies ist eine unendliche Ordnung MA oder MA Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Recall in Woche 1, stellten wir fest, dass eine Voraussetzung für eine stationäre AR 1 ist, dass 1 1 Sei s berechnen die Var xt mit der Kausaldarstellung. Dieser letzte Schritt verwendet eine grundlegende Tatsache über geometrische Serien, die Phi1 erfordert 1 sonst die Serie divergiert. Punktieren Check Randomness. Autocorrelation Plots Box und Jenkins, pp 28-32 sind eine allgemein - Verwendetes Werkzeug zur Überprüfung der Zufälligkeit in einem Datensatz Diese Zufälligkeit wird durch die Berechnung von Autokorrelationen für Datenwerte bei variierenden Zeitverzögerungen ermittelt. Wenn zufällig, sollten solche Autokorrelationen nahe Null für irgendwelche und alle Zeitverzögerungsabstände sein Wenn nicht zufällig, dann eine oder mehrere von Die Autokorrelationen werden in der Modellidentifikationsstufe für Box-Jenkins autoregressive, gleitende durchschnittliche Zeitreihenmodelle verwendet. Autokorrelation ist nur eine Maßnahme der Zufälligkeit. Hinweis, dass unkorreliert nicht unbedingt zufällige Daten bedeutet Dass eine signifikante Autokorrelation nicht zufällig ist. Allerdings können Daten, die keine signifikante Autokorrelation aufweisen, auf andere Weise noch nicht zufällig sein. Autokorrelation ist nur ein Maß für Zufälligkeit Im Rahmen der Modellvalidierung, die die primäre Art der Zufälligkeit ist, werden wir im Handbuch unterschrieben , Die Prüfung auf Autokorrelation ist in der Regel ein ausreichender Test der Zufälligkeit, da die Residuen aus einer schlechten Anpassung Modelle neigen dazu, nicht-subtile Zufälligkeit anzeigen Allerdings einige Anwendungen erfordern eine strengere Bestimmung der Zufälligkeit In diesen Fällen eine Batterie von Tests, die Überprüfung können Für Autokorrelation, angewendet werden, da Daten können nicht zufällig in vielen verschiedenen und oft subtilen Möglichkeiten. Ein Beispiel, wo eine strengere Überprüfung auf Zufälligkeit erforderlich ist, wäre bei der Prüfung von Zufallszahlen Generatoren. Sample Plot Autokorrelationen sollten nahe Null für Zufälligkeit Dies ist in diesem Beispiel nicht der Fall und damit die Zufälligkeitsannahme fehlschlägt. Dieses Beispiel Autokorrelation Plot zeigt, dass die Zeitreihe ist nicht zufällig, sondern hat einen hohen Grad an Autokorrelation zwischen benachbarten und nahezu angrenzenden Beobachtungen. Definition rh versus h. Autokorrelation Die Kurven werden durch eine physikalische Achse gebildet. Autokorrelationskoeffizient. Wobei C h die Autokovarianzfunktion ist und C 0 die Varianzfunktion ist. Hinweis, dass R h zwischen -1 und 1 liegt. Beachten Sie, dass einige Quellen die folgende Formel für die Autokovarianzfunktion verwenden können . Obwohl diese Definition weniger Bias aufweist, hat die 1 N-Formulierung einige wünschenswerte statistische Eigenschaften und ist die am häufigsten in der Statistikliteratur verwendete Form Siehe Seiten 20 und 49-50 in Chatfield für Details. Horizontale Achse Zeitverzögerung hh 1, 2, 3 . Die obige Zeile enthält auch mehrere horizontale Bezugslinien Die Mittellinie ist auf Null Die anderen vier Zeilen sind 95 und 99 Vertrauensbänder Beachten Sie, dass es zwei verschiedene Formeln für die Erzeugung der Vertrauensbänder gibt. Wenn die Autokorrelationskurve verwendet wird, um auf Zufälligkeit zu prüfen Dh es gibt keine Zeitabhängigkeit in den Daten, wird die folgende Formel empfohlen. Wobei N die Stichprobengröße ist, z die kumulative Verteilungsfunktion der Standardnormalverteilung ist und alpha das Signifikanzniveau ist. In diesem Fall haben die Vertrauensbänder eine feste Breite Das hängt von der Stichprobengröße ab Hierbei handelt es sich um die Formel, die verwendet wurde, um die Vertrauensbänder in der obigen Auftragung zu erzeugen. Autokorrelationsdiagramme werden auch in der Modellidentifikationsstufe für die Anpassung von ARIMA-Modellen verwendet. In diesem Fall wird ein gleitendes Durchschnittsmodell für die Daten angenommen Und die folgenden Vertrauensbanden sollten erzeugt werden. Wobei k die Verzögerung ist, N die Stichprobengröße ist, z die kumulative Verteilungsfunktion der Standardnormalverteilung ist und alpha das Signifikanzniveau ist. In diesem Fall steigen die Vertrauensbänder mit zunehmender Verzögerung an. Die Autokorrelation Handlung kann Antworten auf die folgenden Fragen. Are die Daten zufällig. Ist eine Beobachtung im Zusammenhang mit einer angrenzenden Beobachtung. Ist eine Beobachtung im Zusammenhang mit einer Beobachtung zweimal entfernt etc. Is die beobachtete Zeitreihe weißes Rauschen. Ist die beobachtete Zeit Serie sinusoidal. Ist die beobachtete Zeitreihe autoregressiv. Was ist ein geeignetes Modell für die beobachteten Zeitreihen. Ist das Modell. valid und ausreichend. Ist die Formel ss sqrt gültig. Importance Sicherstellung der Gültigkeit der Engineering-Schlussfolgerungen. Randomness zusammen mit festen Modell, fixiert Variation und feste Verteilung ist eine der vier Annahmen, die typischerweise allen Messprozessen zugrunde liegen. Die Zufälligkeitsannahme ist aus folgenden drei Gründen von entscheidender Bedeutung. Die meisten statistischen Standardtests hängen von der Zufälligkeit ab Die Gültigkeit der Testabschlüsse ist direkt mit der Gültigkeit der Zufälligkeitsannahme. Viele häufig verwendete statistische Formeln hängen von der Zufälligkeitsannahme ab, wobei die häufigste Formel die Formel für die Bestimmung der Standardabweichung des Probenmittels ist. Wobei s die Standardabweichung der Daten ist Obwohl schwer verwendet, die Ergebnisse aus der Verwendung dieser Formel sind von keinem Wert, es sei denn, die Zufälligkeitsannahme hält. Für univariate Daten ist das Standardmodell. Wenn die Daten nicht zufällig sind, ist dieses Modell falsch und ungültig, und die Schätzungen für die Parameter wie die Konstante werden unsinnig und ungültig Kurz, wenn der Analytiker nicht auf Zufälligkeit prüft, dann wird die Gültigkeit vieler statistischer Schlussfolgerungen verdächtig. Die Autokorrelationskurve ist eine hervorragende Möglichkeit, auf solche Zufälligkeit zu prüfen.
No comments:
Post a Comment